

Optimal local LPV identification Experiment design

D. $Ghosh^{(1)}$, X. $Bombois^{(1)}$, J. $Huillery^{(1)}$, G. $Scorletti^{(1)}$ et G. $Mercère^{(2)}$

1. Laboratoire Ampère UMR CNRS 5005 2. LIAS, Université de Poitiers

ERNSI workshop - 28 September 2016

An LPV system is a system whose parameters depend on an exogenous (scheduling) variable p(t)

If p(t) is kept constant , the LPV system is an LTI system

The dynamics of this LTI system depend on the value of the constant p

We have a collection of LTI dynamics at different operating points

Such a representation can be used to deal with non-linear systems (gain scheduling)

- **(())) (())) ())**

An LPV system is a system whose parameters depend on an exogenous (scheduling) variable p(t)

If p(t) is kept constant , the LPV system is an LTI system

The dynamics of this LTI system depend on the value of the constant p

We have a collection of LTI dynamics at different operating points

Such a representation can be used to deal with non-linear systems (gain scheduling)

(日) (同) (三) (三)

An LPV system is a system whose parameters depend on an exogenous (scheduling) variable p(t)

If p(t) is kept constant , the LPV system is an LTI system

The dynamics of this LTI system depend on the value of the constant p

We have a collection of LTI dynamics at different operating points

Such a representation can be used to deal with non-linear systems (gain scheduling)

(日) (同) (三) (三)

Local LPV identification approach: p(t) is kept constant at successive operating points and local LTI identification experiments are performed

We determine those operating points and the local LTI identification experiments to guarantee a certain model accuracy with the least input energy

Related work on the selection of the scheduling sequence: *Khalate et al:* 2009, *Vizer et al:* 2015

→ Ξ →

Local LPV identification approach: p(t) is kept constant at successive operating points and local LTI identification experiments are performed

We determine those operating points and the local LTI identification experiments to guarantee a certain model accuracy with the least input energy

Related work on the selection of the scheduling sequence: *Khalate et al:* 2009, *Vizer et al:* 2015

Local LPV identification approach: p(t) is kept constant at successive operating points and local LTI identification experiments are performed

We determine those operating points and the local LTI identification experiments to guarantee a certain model accuracy with the least input energy

Related work on the selection of the scheduling sequence: *Khalate et al:* 2009, *Vizer et al:* 2015

Description of the LPV system

We consider the following LPV-OE system for simplicity:

$$y_{nf}(t) = -\sum_{i=1}^{n_a} a_i^0(p(t)) y(t-i) + \sum_{i=1}^{n_b} b_i^0(p(t)) u(t-i)$$
$$y(t) = y_{nf}(t) + e(t)$$

The parameter vector $\xi^0(p(t)) = (a_1^0(p(t)), ..., b_{n_b}(p(t)))^T$ depends on the time-varying scheduling variable p(t)

$$a_i^0(p(t)) = a_{i,0}^0 + \sum_{j=1}^{n_p} a_{i,j}^0 p^j(t)$$

$$b^0_i(p(t)) = b^0_{i,0} + \sum_{j=1}^{n_p} b^0_{i,j} \ p^j(t)$$

(日) (周) (三) (三)

Description of the LPV system

$$a_i^0(p(t)) = a_{i,0}^0 + \sum_{j=1}^{n_p} a_{i,j}^0 p^j(t) \quad i = 1...n_a$$
$$b_i^0(p(t)) = b_{i,0}^0 + \sum_{j=1}^{n_p} b_{i,j}^0 p^j(t) \quad i = 1...n_b$$

This defines a mapping T(p(t)) between the global parameter vector θ^0 and the time-varying parameter vector $\xi^0(p(t))$

 $\xi^0(p(t)) = T(p(t)) \ \theta^0$

$$\xi^0(p(t)) = (a_1^0(p(t)),, b_{n_b}(p(t)))^T \quad heta^0 = (a_{1,0}^0, ..., b_{n_b,n_p}^0)^T$$

Identification objective

$\xi^0(p(t)) = T(p(t)) \ \theta^0$

The parameter vector θ^0 entirely determines the LPV system

Objective. Determine with the least powerful excitation an estimate $\hat{\theta}$ of θ^0 having a given accuracy:

$$P_{ heta}^{-1} > R_{adm}$$

Identification objective

 $\xi^0(p(t)) = T(p(t)) \ \theta^0$

The parameter vector θ^0 entirely determines the LPV system

Objective. Determine with the least powerful excitation an estimate $\hat{\theta}$ of θ^0 having a given accuracy:

$$P_{ heta}^{-1} > R_{adm}$$

Identification of an LPV system: local approach

Suppose p(t) is kept constant to an operating point \mathbf{p}_m

$$p(t) = \mathbf{p}_m \quad \forall t$$

The LPV system then reduces to an LTI system described by a time-invariant parameter vector $\xi^0(\mathbf{p}_m)$

$$y(t) = G(z,\xi^0(\mathbf{p}_m))u(t) + e(t)$$

$$\xi^0(\mathbf{p}_m) = T(\mathbf{p}_m) \ \theta^0$$

This LTI system can of course then be identified using LTI prediction error identification

イロト イヨト イヨト イヨト

Identification of an LPV system: local approach

Suppose p(t) is kept constant to an operating point \mathbf{p}_m

$$p(t) = \mathbf{p}_m \quad \forall t$$

The LPV system then reduces to an LTI system described by a time-invariant parameter vector $\xi^0(\mathbf{p}_m)$

$$y(t) = G(z,\xi^0(\mathbf{p}_m))u(t) + e(t)$$

 $\xi^0(\mathbf{p}_m) = T(\mathbf{p}_m) \ \theta^0$

This LTI system can of course then be identified using LTI prediction error identification

LTI identification at an operating point \mathbf{p}_m

If we apply an input signal u_m of spectrum Φ_{u_m} to

$$y_m(t) = G(z,\xi^0(\mathbf{p}_m))u_m(t) + e_m(t),$$

we can collect a data set $Z_m^N = \{y_m(t), u_m(t) \mid t = 1...N\}$ and identify an estimate $\hat{\xi}_m$ of $\xi^0(\mathbf{p}_m)$ using:

$$\hat{\xi}_m = \arg \min_{\xi} \frac{1}{N} \sum_{t=1}^{N} (y_m(t) - G(z,\xi) u_m(t))^2$$

This estimate is (asymptotically) such that $\hat{\xi}_m \sim \mathcal{N}(\xi^0(\mathbf{p}_m), P_{\hat{\xi}_m})$

LTI identification at an operating point \mathbf{p}_m

The estimate $\hat{\xi}_m$ is (asymptotically) such that $\hat{\xi}_m \sim \mathcal{N}(\xi^0(\mathbf{p}_m), P_{\hat{\xi}_m})$

The covariance matrix $P_{\hat{\xi}_m}$ depends on $\xi^0(\mathbf{p}_m)$ and Φ_{u_m} :

$$P_{\hat{\xi}_m}^{-1} = \frac{N}{\sigma_e^2} \frac{1}{2\pi} \int_{-\pi}^{\pi} F(e^{j\omega}, \xi^0(\mathbf{p}_m)) \ F(e^{j\omega}, \xi^0(\mathbf{p}_m))^* \ \Phi_{u_m}(\omega) d\omega$$

$$F(z,\xi^0(\mathbf{p}_m)) = \left. \frac{dG(z,\xi)}{d\xi} \right|_{\xi^0(\mathbf{p}_m)}$$

This operation has to be repeated at different \mathbf{p}_m to deduce an estimate of θ^0 since $dim(\xi^0(\mathbf{p}_m)) < dim(\theta^0)$

LTI identification at an operating point \mathbf{p}_m

The estimate $\hat{\xi}_m$ is (asymptotically) such that $\hat{\xi}_m \sim \mathcal{N}(\xi^0(\mathbf{p}_m), P_{\hat{\xi}_m})$

The covariance matrix $P_{\hat{\xi}_m}$ depends on $\xi^0(\mathbf{p}_m)$ and Φ_{u_m} :

$$P_{\hat{\xi}_m}^{-1} = \frac{N}{\sigma_e^2} \frac{1}{2\pi} \int_{-\pi}^{\pi} F(e^{j\omega}, \xi^0(\mathbf{p}_m)) \ F(e^{j\omega}, \xi^0(\mathbf{p}_m))^* \ \Phi_{u_m}(\omega) d\omega$$

$$F(z,\xi^{0}(\mathbf{p}_{m})) = \left.\frac{dG(z,\xi)}{d\xi}\right|_{\xi^{0}(\mathbf{p}_{m})}$$

This operation has to be repeated at different \mathbf{p}_m to deduce an estimate of θ^0 since $dim(\xi^0(\mathbf{p}_m)) < dim(\theta^0)$

We obtain M estimates $\hat{\xi}_m$ of $\xi^0(\mathbf{p}_m) = \mathcal{T}(\mathbf{p}_m) \ \theta^0$:

$$\hat{\xi}_m = T(\mathbf{p}_m) \ \theta^0 + \delta_m \qquad \delta_m \sim \mathcal{N}(0, P_{\hat{\xi}_m})$$

The estimate $\hat{\theta}$ of θ^0 is classically determined using ordinary least squares based on the observations $\hat{\xi}_m$ and the regressor $\mathcal{T}(\mathbf{p}_m)$

This is however not the minimum variance estimator since the respective variances of $\hat{\xi}_m$ are neglected

 \implies use of weighted least squares:

$$\hat{\theta} = \arg\min_{\theta} \sum_{m=1}^{M} \left(\hat{\xi}_m - T(\mathbf{p}_m) \theta \right)^T \mathbf{P}_{\hat{\xi}_m}^{-1} \left(\hat{\xi}_m - T(\mathbf{p}_m) \theta \right)$$

We obtain M estimates $\hat{\xi}_m$ of $\xi^0(\mathbf{p}_m) = \mathcal{T}(\mathbf{p}_m) \ \theta^0$:

$$\hat{\xi}_m = T(\mathbf{p}_m) \ \theta^0 + \delta_m \qquad \delta_m \sim \mathcal{N}(0, P_{\hat{\xi}_m})$$

The estimate $\hat{\theta}$ of θ^0 is classically determined using ordinary least squares based on the observations $\hat{\xi}_m$ and the regressor $\mathcal{T}(\mathbf{p}_m)$

This is however not the minimum variance estimator since the respective variances of $\hat{\xi}_m$ are neglected

 \implies use of weighted least squares:

$$\hat{\theta} = \arg\min_{\theta} \sum_{m=1}^{M} \left(\hat{\xi}_m - T(\mathbf{p}_m) \theta \right)^T \mathbf{P}_{\hat{\xi}_m}^{-1} \left(\hat{\xi}_m - T(\mathbf{p}_m) \theta \right)$$

We obtain M estimates $\hat{\xi}_m$ of $\xi^0(\mathbf{p}_m) = \mathcal{T}(\mathbf{p}_m) \ \theta^0$:

$$\hat{\xi}_m = T(\mathbf{p}_m) \ \theta^0 + \delta_m \qquad \delta_m \sim \mathcal{N}(0, P_{\hat{\xi}_m})$$

The estimate $\hat{\theta}$ of θ^0 is classically determined using ordinary least squares based on the observations $\hat{\xi}_m$ and the regressor $\mathcal{T}(\mathbf{p}_m)$

This is however not the minimum variance estimator since the respective variances of $\hat{\xi}_m$ are neglected

 \implies use of weighted least squares:

$$\hat{\theta} = \arg\min_{\theta} \sum_{m=1}^{M} \left(\hat{\xi}_m - T(\mathbf{p}_m) \theta \right)^T \frac{P_{\hat{\xi}_m}^{-1}}{P_{\hat{\xi}_m}^{-1}} \left(\hat{\xi}_m - T(\mathbf{p}_m) \theta \right)$$

$$\hat{\theta} = \arg\min_{\theta} \sum_{m=1}^{M} \left(\hat{\xi}_m - T(\mathbf{p}_m) \theta \right)^T P_{\hat{\xi}_m}^{-1} \left(\hat{\xi}_m - T(\mathbf{p}_m) \theta \right)$$

The estimate $\hat{\theta}$ is such that $\hat{\theta} \sim \mathcal{N}(\theta^0, P_{\theta})$

$$P_{\theta}^{-1} = \sum_{m=1}^{M} T^{T}(\mathbf{p}_{m}) \; \frac{P_{\hat{\xi}_{m}}^{-1}}{T(\mathbf{p}_{m})}$$

with $P_{\hat{\xi}_m}^{-1}$ linear in Φ_{u_m}

 P_{θ}^{-1} is the sum of the contribution of each local experiments !!

Optimal experimental design

To-be-optimized variables:

- the number M of local identification experiments M,
- the operating points \mathbf{p}_m (m = 1...M)
- the spectra Φ_{u_m} of the input signal u_m (m = 1...M) used in the local identification experiments

To-be-minimized cost:
$$\mathcal{J} = N \sum_{m=1}^{M} \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{u_m}(\omega) d\omega$$

Accuracy constraint: $P_{\theta}^{-1} > R_{adm}$

Optimal experimental design

To-be-optimized variables:

- the number M of local identification experiments M,
- the operating points \mathbf{p}_m (m = 1...M)
- the spectra Φ_{u_m} of the input signal u_m (m = 1...M) used in the local identification experiments

To-be-minimized cost:
$$\mathcal{J} = N \sum_{m=1}^{M} \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{u_m}(\omega) d\omega$$

Accuracy constraint: $P_{\theta}^{-1} > R_{adm}$

Convex optimization for the design of the spectra

Suppose that we have a-priori chosen M and \mathbf{p}_m (m = 1...M)

The design of Φ_{u_m} (m = 1...M) is then a convex optimization problem

$$\min_{\Phi_{u_m} \ (m=1...M)} N \sum_{m=1}^{M} \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{u_m}(\omega) \ d\omega$$
$$\sum_{m=1}^{M} T^{T}(\mathbf{p}_m) P_{\hat{\xi}_m}^{-1}(\Phi_{u_m}) \ T(\mathbf{p}_m) > R_{adm}$$

Convex optimization for the design of the spectra

Suppose that we have a-priori chosen M and \mathbf{p}_m (m = 1...M)

The design of Φ_{u_m} (m = 1...M) is then a convex optimization problem

$$\min_{\Phi_{u_m} \ (m=1...M)} N \sum_{m=1}^{M} \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{u_m}(\omega) \ d\omega$$
$$\sum_{m=1}^{M} T^T(\mathbf{p}_m) P_{\hat{\xi}_m}^{-1}(\Phi_{u_m}) \ T(\mathbf{p}_m) > R_{adm}$$

How to perform the selection of the operating points \mathbf{p}_m ?

$$\min_{\boldsymbol{\Phi}_{u_m}} N \sum_{m=1}^{M} \frac{1}{2\pi} \int_{-\pi}^{\pi} \boldsymbol{\Phi}_{u_m}(\omega) \ d\omega \\ \sum_{m=1}^{M} T^{T}(\mathbf{p}_m) \ P_{\hat{\xi}_m}^{-1}(\boldsymbol{\Phi}_{u_m}) \ T(\mathbf{p}_m) > R_{adm}$$

How to perform the selection of the operating points \mathbf{p}_m ?

$$\min_{\boldsymbol{\Phi}_{u_m}} N \sum_{m=1}^{M} \frac{1}{2\pi} \int_{-\pi}^{\pi} \boldsymbol{\Phi}_{u_m}(\omega) \ d\omega$$
$$\sum_{m=1}^{M} T^{T}(\mathbf{p}_m) \ P_{\hat{\xi}_m}^{-1}(\boldsymbol{\Phi}_{u_m}) \ T(\mathbf{p}_m) > R_{adm}$$

28/09/2016 14 / 21

How to perform the selection of the operating points \mathbf{p}_m ?

$$\min_{\boldsymbol{\Phi}_{u_m}} N \sum_{m=1}^{M} \frac{1}{2\pi} \int_{-\pi}^{\pi} \boldsymbol{\Phi}_{u_m}(\omega) \ d\omega \\ \sum_{m=1}^{M} T^{T}(\mathbf{p}_m) \ P_{\hat{\xi}_m}^{-1}(\boldsymbol{\Phi}_{u_m}) \ T(\mathbf{p}_m) > R_{adm}$$

These experiments are equivalent from a mathematical point of view since they lead to the same cost \mathcal{J} and the same P_{θ}^{-1} !!

Convex formulation of the experiment design problem

Consider a fine grid $\{\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_{M_{grid}}\}$ of the scheduling space

We will determine a spectrum Φ_{u_m} for all \mathbf{p}_m in this fine grid

The optimal experiment design problem can thus be formulated as:

$$\min_{\Phi_{u_m} \ (m=1...M_{grid})} N \sum_{m=1}^{M_{grid}} \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{u_m}(\omega) \ d\omega$$
$$\sum_{m=1}^{M_{grid}} T^T(\mathbf{p}_m) \ P_{\hat{\xi}_m}^{-1}(\Phi_{u_m}) \ T(\mathbf{p}_m) > R_{adm}$$

The local experiments will of course only be performed at the operating points \mathbf{p}_m for which $\Phi_{u_m}^{opt} \neq 0$

X. Bombois (CNRS)

Convex formulation of the experiment design problem

Consider a fine grid $\{\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_{M_{grid}}\}$ of the scheduling space

We will determine a spectrum Φ_{u_m} for all \mathbf{p}_m in this fine grid

The optimal experiment design problem can thus be formulated as:

. .

$$\min_{\Phi_{u_m} \ (m=1...M_{grid})} N \sum_{m=1}^{M_{grid}} \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{u_m}(\omega) \ d\omega$$
$$\sum_{m=1}^{M_{grid}} T^{T}(\mathbf{p}_m) P_{\hat{\xi}_m}^{-1}(\Phi_{u_m}) \ T(\mathbf{p}_m) > R_{adm}$$

The local experiments will of course only be performed at the operating points \mathbf{p}_m for which $\Phi_{u_m}^{opt} \neq 0$

X. Bombois (CNRS)

Convex formulation of the experiment design problem

Consider a fine grid $\{\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_{M_{grid}}\}$ of the scheduling space

We will determine a spectrum Φ_{u_m} for all \mathbf{p}_m in this fine grid

The optimal experiment design problem can thus be formulated as:

. .

$$\min_{\Phi_{u_m} \ (m=1...M_{grid})} N \sum_{m=1}^{M_{grid}} \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{u_m}(\omega) \ d\omega$$
$$\sum_{m=1}^{M_{grid}} T^T(\mathbf{p}_m) \ P_{\hat{\xi}_m}^{-1}(\Phi_{u_m}) \ T(\mathbf{p}_m) > R_{adm}$$

The local experiments will of course only be performed at the operating points \mathbf{p}_m for which $\Phi_{u_m}^{opt} \neq 0$

X. Bombois (CNRS)

The covariance matrix P_{θ} depends on θ^0

We can determine a first estimate θ_{init} of θ^0 using an initial local LPV identification

The optimal experiment design problem will then be used to complement the information delivered by this initial experiment

In this optimal experiment design problem, θ^0 will be replaced by θ_{init}

Numerical illustration

Consider the following LPV-OE system: $y(t) = y_{nf}(t) + e(t)$

$$y_{nf}(t) = -a_1^0(p(t)) y(t-1) + b_1^0(p(t)) u(t-1)$$

 $a_1^0(p(t)) = -0.9 + 0.1 p(t)$ $b_1^0(p(t)) = 10 - 1 p(t)$

$$\underbrace{\begin{pmatrix} a_1^0(p(t)) \\ b_1^0(p(t)) \end{pmatrix}}_{=\xi^0(p(t))} = \underbrace{\begin{pmatrix} 1 & p(t) & 0 & 0 \\ 0 & 0 & 1 & p(t) \end{pmatrix}}_{=T(p(t))} \underbrace{\begin{pmatrix} -0.9 \\ 0.1 \\ 10 \\ -1 \end{pmatrix}}_{=\theta^0}$$

p(t) can take values in the scheduling space [0 8]

通下 イヨト イ

Numerical illustration

Consider the following LPV-OE system: $y(t) = y_{nf}(t) + e(t)$

$$y_{nf}(t) = -a_1^0(p(t)) y(t-1) + b_1^0(p(t)) u(t-1)$$

$$a_1^0(p(t)) = -0.9 \ + \ 0.1 \ p(t) \ b_1^0(p(t)) = 10 \ - \ 1 \ p(t)$$

$$\underbrace{\begin{pmatrix} a_1^0(p(t)) \\ b_1^0(p(t)) \end{pmatrix}}_{=\xi^0(p(t))} = \underbrace{\begin{pmatrix} 1 & p(t) & 0 & 0 \\ 0 & 0 & 1 & p(t) \end{pmatrix}}_{=T(p(t))} \underbrace{\begin{pmatrix} -0.9 \\ 0.1 \\ 10 \\ -1 \end{pmatrix}}_{=\theta^0}$$

p(t) can take values in the scheduling space [0 8]

(日) (同) (三) (三)

Numerical illustration

Consider the following LPV-OE system: $y(t) = y_{nf}(t) + e(t)$

$$y_{nf}(t) = -a_1^0(p(t)) y(t-1) + b_1^0(p(t)) u(t-1)$$

$$\underbrace{\begin{pmatrix} a_1^0(p(t)) \\ b_1^0(p(t)) \end{pmatrix}}_{=\xi^0(p(t))} = \underbrace{\begin{pmatrix} 1 & p(t) & 0 & 0 \\ 0 & 0 & 1 & p(t) \end{pmatrix}}_{=T(p(t))} \underbrace{\begin{pmatrix} -0.9 \\ 0.1 \\ 10 \\ -1 \end{pmatrix}}_{=\theta^0}$$

p(t) can take values in the scheduling space [0 8]

</₽> < ∃ > <

Frequency responses of the corresponding $G(z, \xi^0(\mathbf{p}_m))$

< ロ > < 同 > < 三 > < 三

We choose: N = 1000, $\sigma_e^2 = 0.5$ and R_{adm} enforces a standard deviation of 0.3% on each parameter of θ^0

Optimization problem based on the $M_{grid} = 17$ operating points

$$\mathbf{p}_m = 0, \ 0.5, \ 1, \ 1.5, ..., \ 8$$

 \implies only three nonzero Φ_{u_m} at $\mathbf{p}_m = 0, 1$ and 8 Corresponding $G(z, \xi^0(\mathbf{p}_m))$ and Φ_{u_m} We choose: N = 1000, $\sigma_e^2 = 0.5$ and R_{adm} enforces a standard deviation of 0.3% on each parameter of θ^0

Optimization problem based on the $M_{grid} = 17$ operating points

$$\mathbf{p}_m=0,~0.5,~1,~1.5,...,~8$$

 \implies only three nonzero Φ_{u_m} at $\mathbf{p}_m = 0$, 1 and 8 Corresponding $G(z, \xi^0(\mathbf{p}_m))$ and Φ_{u_m}

Let us compare the required input energy \mathcal{J} to obtain $P_{\theta}^{-1} > R_{adm}$ for different choices of \mathbf{p}_m

p _m	required input energy ${\cal J}$
$\mathbf{p}_m = 0, \ 1, \ 8$	1380
$p_m = 0, 4, 8$	2320
$\mathbf{p}_m = 0, \ 1$	23000
${f p}_m = 0, \ 8$	16000
${f p}_m = 1, \ 8$	23000

Conclusions

First attempt to tackle the optimal experiment design problem for $\ensuremath{\mathsf{LPV}}$ systems

Local approach: p(t) follows a staircase shape

A staircase p(t) is certainly not (fully) optimal

Future work will consider other shapes of p(t) (global LPV identification)

(日) (同) (三) (三)

Conclusions

First attempt to tackle the optimal experiment design problem for LPV systems

Local approach: p(t) follows a staircase shape

A staircase p(t) is certainly not (fully) optimal

Future work will consider other shapes of p(t) (global LPV identification)

Conclusions

First attempt to tackle the optimal experiment design problem for LPV systems

Local approach: p(t) follows a staircase shape

A staircase p(t) is certainly not (fully) optimal

Future work will consider other shapes of p(t) (global LPV identification)