
Optimal local LPV identification
experiment design

D. Ghosh(1), X. Bombois(1), J. Huillery(1), G. Scorletti(1) et
G. Mercère(2)

1. Laboratoire Ampère UMR CNRS 5005
2. LIAS, Université de Poitiers
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Introduction

An LPV system is a system whose parameters depend on an exogenous
(scheduling) variable p(t)

If p(t) is kept constant , the LPV system is an LTI system

The dynamics of this LTI system depend on the value of the constant p

We have a collection of LTI dynamics at different operating points

Such a representation can be used to deal with non-linear systems (gain
scheduling)
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Introduction

Local LPV identification approach: p(t) is kept constant at successive
operating points and local LTI identification experiments are performed

We determine those operating points and the local LTI identification
experiments to guarantee a certain model accuracy with the least input
energy

Related work on the selection of the scheduling sequence: Khalate et al:
2009, Vizer et al: 2015
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Description of the LPV system

We consider the following LPV-OE system for simplicity:

ynf (t) = −
na∑
i=1

a0
i (p(t)) y(t − i) +

nb∑
i=1

b0
i (p(t)) u(t − i)

y(t) = ynf (t) + e(t)

The parameter vector ξ0(p(t)) = (a0
1(p(t)), ...., bnb(p(t)))T depends on

the time-varying scheduling variable p(t)

a0
i (p(t)) = a0

i ,0 +

np∑
j=1

a0
i ,j p

j(t)

b0
i (p(t)) = b0

i ,0 +

np∑
j=1

b0
i ,j p

j(t)

X. Bombois (CNRS) OED-LPV 28/09/2016 4 / 21



Description of the LPV system

a0
i (p(t)) = a0

i ,0 +

np∑
j=1

a0
i ,j p

j(t) i = 1...na

b0
i (p(t)) = b0

i ,0 +

np∑
j=1

b0
i ,j p

j(t) i = 1...nb

This defines a mapping T (p(t)) between the global parameter vector θ0

and the time-varying parameter vector ξ0(p(t))

ξ0(p(t)) = T (p(t)) θ0

ξ0(p(t)) = (a0
1(p(t)), ...., bnb(p(t)))T θ0 = (a0

1,0, ..., b
0
nb,np

)T
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Identification objective

ξ0(p(t)) = T (p(t)) θ0

The parameter vector θ0 entirely determines the LPV system

Objective. Determine with the least powerful excitation an estimate θ̂ of
θ0 having a given accuracy:

P−1
θ > Radm
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Identification of an LPV system: local approach

Suppose p(t) is kept constant to an operating point pm

p(t) = pm ∀t

The LPV system then reduces to an LTI system described by a
time-invariant parameter vector ξ0(pm)

y(t) = G (z , ξ0(pm))u(t) + e(t)

ξ0(pm) = T (pm) θ0

This LTI system can of course then be identified using LTI prediction error
identification
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LTI identification at an operating point pm

If we apply an input signal um of spectrum Φum to

ym(t) = G (z , ξ0(pm))um(t) + em(t),

we can collect a data set ZN
m = {ym(t), um(t) | t = 1...N} and identify an

estimate ξ̂m of ξ0(pm) using:

ξ̂m = arg min
ξ

1

N

N∑
t=1

(ym(t)− G (z , ξ)um(t))2

This estimate is (asymptotically) such that ξ̂m ∼ N (ξ0(pm),Pξ̂m)
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LTI identification at an operating point pm

The estimate ξ̂m is (asymptotically) such that ξ̂m ∼ N (ξ0(pm),Pξ̂m)

The covariance matrix Pξ̂m depends on ξ0(pm) and Φum :

P−1

ξ̂m
=

N

σ2
e

1

2π

∫ π

−π
F (e jω, ξ0(pm)) F (e jω, ξ0(pm))∗ Φum(ω)dω

F (z , ξ0(pm)) =
dG (z , ξ)

dξ

∣∣∣∣
ξ0(pm)

This operation has to be repeated at different pm to deduce an estimate of
θ0 since dim(ξ0(pm)) < dim(θ0)
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We obtain M estimates ξ̂m of ξ0(pm) = T (pm) θ0 :

ξ̂m = T (pm) θ0 + δm δm ∼ N (0,Pξ̂m)

The estimate θ̂ of θ0 is classically determined using ordinary least squares
based on the observations ξ̂m and the regressor T (pm)

This is however not the minimum variance estimator since the respective
variances of ξ̂m are neglected

=⇒ use of weighted least squares:

θ̂ = arg min
θ

M∑
m=1

(
ξ̂m − T (pm)θ

)T
P−1

ξ̂m

(
ξ̂m − T (pm)θ

)
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θ̂ = arg min
θ

M∑
m=1

(
ξ̂m − T (pm)θ

)T
P−1

ξ̂m

(
ξ̂m − T (pm)θ

)

The estimate θ̂ is such that θ̂ ∼ N (θ0,Pθ)

P−1
θ =

M∑
m=1

TT (pm) P−1

ξ̂m
T (pm)

with P−1

ξ̂m
linear in Φum

P−1
θ is the sum of the contribution of each local experiments !!
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Optimal experimental design

To-be-optimized variables:

the number M of local identification experiments M,
the operating points pm (m = 1...M)
the spectra Φum of the input signal um (m = 1...M) used in the local
identification experiments

To-be-minimized cost: J = N
M∑

m=1

1

2π

∫ π

−π
Φum(ω) dω

Accuracy constraint: P−1
θ > Radm

time

p(t)

LTI 1

u1

...

LTI 2

LTI 3

LTI M

u2

u3

uM

p1

p2

p3

pM

...
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Convex optimization for the design of the spectra

Suppose that we have a-priori chosen M and pm (m = 1...M)

The design of Φum (m = 1...M) is then a convex optimization problem

min
Φum (m=1...M)

N
M∑

m=1

1

2π

∫ π

−π
Φum(ω) dω

M∑
m=1

TT (pm) P−1

ξ̂m
(Φum) T (pm) > Radm
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How to perform the selection of the operating points pm?

minΦum
N
∑M

m=1
1

2π

∫ π
−π Φum(ω) dω∑M

m=1 T
T (pm) P−1

ξ̂m
(Φum) T (pm) > Radm

time

p(t)

LTI 1

LTI 2

u1

u2




( )
o

C 
o

G0

k
e

k
y 


( )ˆ

k
C  o

G0 k
y

k
r









o
H

k
e

o
H

Two experiments with the same cost J and the same P−1
θ !!
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time
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u1
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time

p(t)

LTI 1
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u1

u2

0

0

0

LTI 3

LTI 4

LTI 5

These experiments are equivalent from a mathematical point of view since
they lead to the same cost J and the same P−1

θ !!
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Convex formulation of the experiment design problem

Consider a fine grid {p1, p2, ...,pMgrid
} of the scheduling space

We will determine a spectrum Φum for all pm in this fine grid

The optimal experiment design problem can thus be formulated as:

min
Φum (m=1...Mgrid )

N

Mgrid∑
m=1

1

2π

∫ π

−π
Φum(ω) dω

Mgrid∑
m=1

TT (pm) P−1

ξ̂m
(Φum) T (pm) > Radm

The local experiments will of course only be performed at the operating
points pm for which Φopt

um 6= 0
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Chicken-and-egg problem

The covariance matrix Pθ depends on θ0

We can determine a first estimate θinit of θ0 using an initial local LPV
identification

The optimal experiment design problem will then be used to complement
the information delivered by this initial experiment

In this optimal experiment design problem, θ0 will be replaced by θinit
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Numerical illustration

Consider the following LPV-OE system: y(t) = ynf (t) + e(t)

ynf (t) = −a0
1(p(t)) y(t − 1) + b0

1(p(t)) u(t − 1)

a0
1(p(t)) = −0.9 + 0.1 p(t) b0

1(p(t)) = 10 − 1 p(t)

(
a0

1(p(t))
b0

1(p(t))

)
︸ ︷︷ ︸

=ξ0(p(t))

=

(
1 p(t) 0 0
0 0 1 p(t)

)
︸ ︷︷ ︸

=T (p(t))


−0.9
0.1
10
−1


︸ ︷︷ ︸

=θ0

p(t) can take values in the scheduling space [0 8]
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Frequency responses of the corresponding G (z , ξ0(pm))
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We choose: N = 1000, σ2
e = 0.5 and Radm enforces a standard deviation

of 0.3% on each parameter of θ0

Optimization problem based on the Mgrid = 17 operating points

pm = 0, 0.5, 1, 1.5, ..., 8

=⇒ only three nonzero Φum at pm = 0, 1 and 8

Corresponding G (z , ξ0(pm)) and Φum
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Let us compare the required input energy J to obtain P−1
θ > Radm for

different choices of pm

pm required input energy J
pm = 0, 1, 8 1380

pm = 0, 4, 8 2320
pm = 0, 1 23000
pm = 0, 8 16000
pm = 1, 8 23000
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Conclusions

First attempt to tackle the optimal experiment design problem for LPV
systems

Local approach: p(t) follows a staircase shape
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
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A staircase p(t) is certainly not (fully) optimal

Future work will consider other shapes of p(t) (global LPV identification)
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