

Optimal local LPV identification experiment design

D. $\textsf{Ghosh}^{(1)}$, X. Bombois⁽¹⁾, J. Huillery⁽¹⁾, G. Scorletti⁽¹⁾ et $G.$ Mercère⁽²⁾

> 1. Laboratoire Ampère UMR CNRS 5005 2. LIAS, Université de Poitiers

ERNSI workshop - 28 September 2016

An LPV system is a system whose parameters depend on an exogenous (scheduling) variable $p(t)$

If $p(t)$ is kept constant, the LPV system is an LTI system

The dynamics of this LTI system depend on the value of the constant p

We have a collection of LTI dynamics at different operating points

Such a representation can be used to deal with non-linear systems (gain scheduling)

 Ω

 4 ロ } 4 4 9 } 4 \equiv } -4

An LPV system is a system whose parameters depend on an exogenous (scheduling) variable $p(t)$

If $p(t)$ is kept constant, the LPV system is an LTI system

The dynamics of this LTI system depend on the value of the constant p

We have a collection of LTI dynamics at different operating points

Such a representation can be used to deal with non-linear systems (gain scheduling)

イロト イ母 トイヨ トイヨト

An LPV system is a system whose parameters depend on an exogenous (scheduling) variable $p(t)$

If $p(t)$ is kept constant, the LPV system is an LTI system

The dynamics of this LTI system depend on the value of the constant p

We have a collection of LTI dynamics at different operating points

Such a representation can be used to deal with non-linear systems (gain scheduling)

 Ω

イロト イ母 トイヨ トイヨト

Local LPV identification approach: $p(t)$ is kept constant at successive operating points and local LTI identification experiments are performed

We determine those operating points and the local LTI identification experiments to guarantee a certain model accuracy with the least input

Related work on the selection of the scheduling sequence: *Khalate et al:* 2009, Vizer et al: 2015

∢ ロ ▶ ィ 何

Local LPV identification approach: $p(t)$ is kept constant at successive operating points and local LTI identification experiments are performed

We determine those operating points and the local LTI identification experiments to guarantee a certain model accuracy with the least input energy

Related work on the selection of the scheduling sequence: *Khalate et al:* 2009, Vizer et al: 2015

Local LPV identification approach: $p(t)$ is kept constant at successive operating points and local LTI identification experiments are performed

We determine those operating points and the local LTI identification experiments to guarantee a certain model accuracy with the least input energy

Related work on the selection of the scheduling sequence: Khalate et al: 2009, Vizer et al: 2015

Description of the LPV system

We consider the following LPV-OE system for simplicity:

$$
y_{nf}(t) = -\sum_{i=1}^{n_a} a_i^0(p(t)) y(t-i) + \sum_{i=1}^{n_b} b_i^0(p(t)) u(t-i)
$$

$$
y(t) = y_{nf}(t) + e(t)
$$

The parameter vector $\xi^0(\rho(t)) = (a^0_1(\rho(t)),....,b_{n_b}(\rho(t)))^{\mathsf{T}}$ depends on the time-varying scheduling variable $p(t)$

$$
a_i^0(p(t)) = a_{i,0}^0 + \sum_{j=1}^{n_p} a_{i,j}^0 \ p^j(t)
$$

$$
b_i^0(p(t))=b_{i,0}^0\;+\;\sum_{j=1}^{n_p}b_{i,j}^0\;p^j(t)
$$

 QQQ

イロト イ母 トイヨ トイヨト

Description of the LPV system

$$
a_i^0(p(t)) = a_{i,0}^0 + \sum_{j=1}^{n_p} a_{i,j}^0 p^j(t) \quad i = 1...n_a
$$

$$
b_i^0(p(t)) = b_{i,0}^0 + \sum_{j=1}^{n_p} b_{i,j}^0 p^j(t) \quad i = 1...n_b
$$

This defines a mapping $\, \mathcal{T}(p(t))$ between the global parameter vector θ^0 and the time-varying parameter vector $\xi^0(\rho(t))$

 $\xi^0(p(t)) = \mathcal{T}(p(t)) \; \theta^0$

$$
\xi^0(\rho(t))=(a^0_1(\rho(t)),....,b_{n_b}(\rho(t)))^{\sf T}\quad \theta^0=(a^0_{1,0},...,b^0_{n_b,n_p})^{\sf T}
$$

4.0.3

 200

Identification objective

$\xi^0(\rho(t)) = \mathcal{T}(\rho(t)) \; \theta^0$

The parameter vector θ^0 entirely determines the LPV system

Objective. Determine with the least powerful excitation an estimate $\hat{\theta}$ of θ^{0} having a given accuracy:

$$
P_{\theta}^{-1} > R_{\text{adm}}
$$

4.0.3

Identification objective

 $\xi^0(\rho(t)) = \mathcal{T}(\rho(t)) \; \theta^0$

The parameter vector θ^0 entirely determines the LPV system

Objective. Determine with the least powerful excitation an estimate $\hat{\theta}$ of θ^{0} having a given accuracy:

$$
P_{\theta}^{-1} > R_{\text{adm}}
$$

Identification of an LPV system: local approach

Suppose $p(t)$ is kept constant to an operating point \mathbf{p}_m

 $p(t) = \mathbf{p}_m$ $\forall t$

The LPV system then reduces to an LTI system described by a time-invariant parameter vector $\xi^0({\bf p}_m)$

 $y(t)=G(z,\xi^0(\mathbf{p}_m))u(t)+e(t)$

 $\xi^0({\sf p}_m) = \, \mathcal{T}({\sf p}_m) \; \theta^0$

This LTI system can of course then be identified using LTI prediction error

 Ω

イロト イ母 トイヨ トイヨト

Identification of an LPV system: local approach

Suppose $p(t)$ is kept constant to an operating point \mathbf{p}_m

$$
p(t) = \mathbf{p}_m \ \ \forall t
$$

The LPV system then reduces to an LTI system described by a time-invariant parameter vector $\xi^0({\mathbf p}_m)$

$$
y(t) = G(z, \xi^{0}(\mathbf{p}_{m}))u(t) + e(t)
$$

$$
\xi^0(\mathbf{p}_m) = \mathcal{T}(\mathbf{p}_m) \; \theta^0
$$

This LTI system can of course then be identified using LTI prediction error identification

LTI identification at an operating point p_m

If we apply an input signal u_m of spectrum Φ_{u_m} to

$$
y_m(t) = G(z,\xi^0(\mathbf{p}_m))u_m(t) + e_m(t),
$$

we can collect a data set $Z_m^{\mathcal{N}}=\{y_m(t),\,\,u_m(t)\mid t=1...N\}$ and identify an estimate $\hat{\xi}_m$ of $\xi^0(\mathbf{p}_m)$ using:

$$
\hat{\xi}_m = \arg \ \min_{\xi} \frac{1}{N} \sum_{t=1}^N \left(y_m(t) - G(z, \xi) u_m(t) \right)^2
$$

This estimate is (asymptotically) such that $\hat{\xi}_m \sim \mathcal{N}(\xi^0(\mathbf{p}_m), P_{\hat{\xi}_m})$

 QQQ

LTI identification at an operating point p_m

The estimate $\hat{\xi}_m$ is (asymptotically) such that $\hat{\xi}_m \sim \mathcal{N}(\xi^0(\mathbf{p}_m), P_{\hat{\xi}_m})$

The covariance matrix $P_{\hat{\xi}_m}$ depends on $\xi^0(\mathbf{p}_m)$ and Φ_{u_m} :

$$
P_{\hat{\xi}_m}^{-1} = \frac{N}{\sigma_e^2} \frac{1}{2\pi} \int_{-\pi}^{\pi} F(e^{j\omega}, \xi^0(\mathbf{p}_m)) F(e^{j\omega}, \xi^0(\mathbf{p}_m))^* \Phi_{u_m}(\omega) d\omega
$$

$$
F(z,\xi^0(\mathbf{p}_m))=\left.\frac{dG(z,\xi)}{d\xi}\right|_{\xi^0(\mathbf{p}_m)}
$$

This operation has to be repeated at different \mathbf{p}_m to deduce an estimate of θ^{0} since $\textit{dim}(\xi^{\mathsf{0}}(\mathbf{p}_m)) < \textit{dim}(\theta^{\mathsf{0}})$

 200

LTI identification at an operating point p_m

The estimate $\hat{\xi}_m$ is (asymptotically) such that $\hat{\xi}_m \sim \mathcal{N}(\xi^0(\mathbf{p}_m), P_{\hat{\xi}_m})$

The covariance matrix $P_{\hat{\xi}_m}$ depends on $\xi^0(\mathbf{p}_m)$ and Φ_{u_m} :

$$
P_{\hat{\xi}_m}^{-1} = \frac{N}{\sigma_e^2} \frac{1}{2\pi} \int_{-\pi}^{\pi} F(e^{j\omega}, \xi^0(\mathbf{p}_m)) F(e^{j\omega}, \xi^0(\mathbf{p}_m))^* \Phi_{u_m}(\omega) d\omega
$$

$$
F(z,\xi^0(\mathbf{p}_m))=\left.\frac{dG(z,\xi)}{d\xi}\right|_{\xi^0(\mathbf{p}_m)}
$$

This operation has to be repeated at different \mathbf{p}_m to deduce an estimate of θ^0 since $dim(\xi^0(\mathbf{p}_m)) < dim(\theta^0)$

We obtain M estimates $\hat{\xi}_m$ of $\xi^0(\mathbf{p}_m) = \mathcal{T}(\mathbf{p}_m)$ θ^0 :

$$
\hat{\xi}_m = \mathcal{T}(\mathbf{p}_m) \; \theta^0 + \delta_m \qquad \delta_m \sim \mathcal{N}(0, P_{\hat{\xi}_m})
$$

The estimate $\hat{\theta}$ of θ^0 is classically determined using ordinary least squares based on the observations $\hat{\mathcal{E}}_m$ and the regressor $\mathcal{T}(\mathbf{p}_m)$

This is however not the minimum variance estimator since the respective variances of $\hat{\xi}_m$ are neglected

 \implies use of weighted least squares:

$$
\hat{\theta} = \arg\min_{\theta} \sum_{m=1}^{M} \left(\hat{\xi}_m - \mathcal{T}(\mathbf{p}_m)\theta \right)^T P_{\hat{\xi}_m}^{-1} \left(\hat{\xi}_m - \mathcal{T}(\mathbf{p}_m)\theta \right)
$$

We obtain M estimates $\hat{\xi}_m$ of $\xi^0(\mathbf{p}_m) = \mathcal{T}(\mathbf{p}_m)$ θ^0 :

$$
\hat{\xi}_m = \mathcal{T}(\mathbf{p}_m) \; \theta^0 + \delta_m \qquad \delta_m \sim \mathcal{N}(0, P_{\hat{\xi}_m})
$$

The estimate $\hat{\theta}$ of θ^0 is classically determined using ordinary least squares based on the observations $\hat{\xi}_m$ and the regressor $\mathcal{T}(\mathbf{p}_m)$

This is however not the minimum variance estimator since the respective variances of $\hat{\xi}_m$ are neglected

 \implies use of weighted least squares:

$$
\hat{\theta} = \arg \min_{\theta} \sum_{m=1}^{M} \left(\hat{\xi}_m - \mathcal{T}(\mathbf{p}_m) \theta \right)^T P_{\hat{\xi}_m}^{-1} \left(\hat{\xi}_m - \mathcal{T}(\mathbf{p}_m) \theta \right)
$$

We obtain M estimates $\hat{\xi}_m$ of $\xi^0(\mathbf{p}_m) = \mathcal{T}(\mathbf{p}_m)$ θ^0 :

$$
\hat{\xi}_m = \mathcal{T}(\mathbf{p}_m) \; \theta^0 + \delta_m \qquad \delta_m \sim \mathcal{N}(0, P_{\hat{\xi}_m})
$$

The estimate $\hat{\theta}$ of θ^0 is classically determined using ordinary least squares based on the observations $\hat{\xi}_m$ and the regressor $\mathcal{T}(\mathbf{p}_m)$

This is however not the minimum variance estimator since the respective variances of $\hat{\xi}_m$ are neglected

 \implies use of weighted least squares:

$$
\hat{\theta} = \arg \min_{\theta} \sum_{m=1}^{M} \left(\hat{\xi}_m - \mathcal{T}(\mathbf{p}_m) \theta \right)^{\mathsf{T}} P_{\hat{\xi}_m}^{-1} \left(\hat{\xi}_m - \mathcal{T}(\mathbf{p}_m) \theta \right)
$$

$$
\hat{\theta} = \arg \min_{\theta} \sum_{m=1}^{M} \left(\hat{\xi}_m - \mathcal{T}(\mathbf{p}_m) \theta \right)^T P_{\hat{\xi}_m}^{-1} \left(\hat{\xi}_m - \mathcal{T}(\mathbf{p}_m) \theta \right)
$$

The estimate $\hat{\theta}$ is such that $\hat{\theta} \sim \mathcal{N}(\theta^0, P_\theta)$

$$
P_{\theta}^{-1} = \sum_{m=1}^{M} T^{T}(\mathbf{p}_m) P_{\hat{\xi}_m}^{-1} T(\mathbf{p}_m)
$$

with $P_{\hat{c}}^{-1}$ $\hat{\xi}^{-1}_{m}$ linear in Φ $_{u_m}$

> P_θ^{-1} θ^{-1} is the sum of the contribution of each local experiments !!

 QQ

K ロト K 倒 ト K ミト

Optimal experimental design

To-be-optimized variables:

- \bullet the number M of local identification experiments M,
- the operating points \mathbf{p}_m ($m = 1...M$)
- the spectra Φ_{u_m} of the input signal u_m ($m = 1...M$) used in the local identification experiments

To-be-minimized cost:
$$
\mathcal{J} = N \sum_{m=1}^{M} \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{u_m}(\omega) d\omega
$$

Accuracy constraint: $P_{\theta}^{-1} > R_{adm}$

Optimal experimental design

To-be-optimized variables:

- \bullet the number M of local identification experiments M,
- the operating points \mathbf{p}_m ($m = 1...M$)
- the spectra Φ_{u_m} of the input signal u_m ($m = 1...M$) used in the local identification experiments

To-be-minimized cost:
$$
\mathcal{J} = N \sum_{m=1}^{M} \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{u_m}(\omega) d\omega
$$

Accuracy constraint: $P_{\theta}^{-1} > R_{adm}$

Convex optimization for the design of the spectra

Suppose that we have a-priori chosen M and \mathbf{p}_m ($m = 1...M$)

The design of Φ_{u_m} $(m=1...M)$ is then a convex optimization problem

$$
\min_{\Phi_{u_m}} \min_{(m=1...M)} N \sum_{m=1}^M \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{u_m}(\omega) d\omega
$$

$$
\sum_{m=1}^M T^T(\mathbf{p}_m) P_{\hat{\xi}_m}^{-1}(\Phi_{u_m}) T(\mathbf{p}_m) > R_{adm}
$$

4 0 8

Convex optimization for the design of the spectra

Suppose that we have a-priori chosen M and \mathbf{p}_m ($m = 1...M$)

The design of Φ_{u_m} $(m=1...M)$ is then a convex optimization problem

$$
\min_{\Phi_{u_m}} \sum_{(m=1...M)}^M N \sum_{m=1}^M \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{u_m}(\omega) d\omega
$$

$$
\sum_{m=1}^M T^{\mathsf{T}}(\mathbf{p}_m) P_{\hat{\xi}_m}^{-1}(\Phi_{u_m}) \mathsf{T}(\mathbf{p}_m) > R_{adm}
$$

← ロ ▶ → イ 同

How to perform the selection of the operating points \mathbf{p}_m ?

$$
\min_{\Phi_{u_m}} N \sum_{m=1}^M \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{u_m}(\omega) d\omega
$$

$$
\sum_{m=1}^M T^{\mathsf{T}}(\mathbf{p}_m) P_{\hat{\xi}_m}^{-1}(\Phi_{u_m}) \mathsf{T}(\mathbf{p}_m) > R_{adm}
$$

How to perform the selection of the operating points \mathbf{p}_m ?

$$
\min_{\Phi_{u_m}} N \sum_{m=1}^M \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{u_m}(\omega) d\omega
$$

$$
\sum_{m=1}^M T^T(\mathbf{p}_m) P_{\hat{\xi}_m}^{-1}(\Phi_{u_m}) T(\mathbf{p}_m) > R_{adm}
$$

 \leftarrow

X. Bombois (CNRS) C[OED-LPV](#page-0-0) 28/09/2016 14 / 21

How to perform the selection of the operating points \mathbf{p}_m ?

$$
\min_{\Phi_{u_m}} N \sum_{m=1}^M \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{u_m}(\omega) d\omega
$$

$$
\sum_{m=1}^M T^T(\mathbf{p}_m) P_{\hat{\xi}_m}^{-1}(\Phi_{u_m}) T(\mathbf{p}_m) > R_{adm}
$$

These experiments are equivalent from a mathematical point of view since they lead to the same cost $\mathcal J$ and the same P_θ^{-1} $\stackrel{\cdot -1}{\theta}$!!

つひひ

Convex formulation of the experiment design problem

Consider a fine grid $\{p_1, p_2, ..., p_{M_{grid}}\}$ of the scheduling space

We will determine a spectrum Φ_{u_m} for all \mathbf{p}_m in this fine grid

The optimal experiment design problem can thus be formulated as:

$$
\begin{aligned}\n&\min_{\Phi_{u_m}} \min_{(m=1...M_{grid})} N \sum_{m=1}^{M_{grid}} \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{u_m}(\omega) d\omega \\
&\sum_{m=1}^{M_{grid}} \mathcal{T}^{\mathcal{T}}(\mathbf{p}_m) P_{\hat{\xi}_m}^{-1}(\Phi_{u_m}) \mathcal{T}(\mathbf{p}_m) > R_{adm}\n\end{aligned}
$$

The local experiments will of course only be performed at the operating points \mathbf{p}_m for which $\Phi_{u_m}^{opt} \neq 0$ QQ イロト イ母 トイヨ トイヨト

Convex formulation of the experiment design problem

Consider a fine grid $\{p_1, p_2, ..., p_{M_{grid}}\}$ of the scheduling space

We will determine a spectrum Φ_{u_m} for all \mathbf{p}_m in this fine grid

The optimal experiment design problem can thus be formulated as:

 \overline{M}

$$
\min_{\Phi_{u_m} \ (m=1...M_{grid})} N \sum_{m=1}^{M_{grid}} \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{u_m}(\omega) d\omega
$$

$$
\sum_{m=1}^{M_{grid}} \mathcal{T}^{\mathcal{T}}(\mathbf{p}_m) P_{\hat{\xi}_m}^{-1}(\Phi_{u_m}) \mathcal{T}(\mathbf{p}_m) > R_{adm}
$$

The local experiments will of course only be performed at the operating points \mathbf{p}_m for which $\Phi_{u_m}^{opt} \neq 0$ QQ

Convex formulation of the experiment design problem

Consider a fine grid $\{p_1, p_2, ..., p_{M_{grid}}\}$ of the scheduling space

We will determine a spectrum Φ_{u_m} for all \mathbf{p}_m in this fine grid

The optimal experiment design problem can thus be formulated as:

 $\ddot{}$

$$
\min_{\substack{\Phi_{u_m} \ (m=1...M_{grid})}} N \sum_{m=1}^{M_{grid}} \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi_{u_m}(\omega) d\omega
$$

$$
\sum_{m=1}^{M_{grid}} \mathcal{T}^{\mathcal{T}}(\mathbf{p}_m) P_{\hat{\xi}_m}^{-1}(\Phi_{u_m}) \mathcal{T}(\mathbf{p}_m) > R_{adm}
$$

The local experiments will of course only be performed at the operating points \mathbf{p}_m for which $\Phi_{u_m}^{opt} \neq 0$ QQ

The covariance matrix P_θ depends on θ^{0}

We can determine a first estimate θ_{init} of θ^0 using an initial local LPV identification

The optimal experiment design problem will then be used to complement the information delivered by this initial experiment

In this optimal experiment design problem, θ^0 will be replaced by θ_{init}

Numerical illustration

Consider the following LPV-OE system: $y(t) = y_{nf}(t) + e(t)$

$$
y_{n}(t) = -a_1^0(p(t)) y(t-1) + b_1^0(p(t)) u(t-1)
$$

 $a_1^0(p(t)) = -0.9 + 0.1 p(t)$ $b_1^0(p(t)) = 10 - 1 p(t)$

$$
\underbrace{\begin{pmatrix} a_1^0(\rho(t)) \\ b_1^0(\rho(t)) \end{pmatrix}}_{=\xi^0(\rho(t))} = \underbrace{\begin{pmatrix} 1 & \rho(t) & 0 & 0 \\ 0 & 0 & 1 & \rho(t) \end{pmatrix}}_{=\mathcal{T}(\rho(t))} \underbrace{\begin{pmatrix} -0.9 \\ 0.1 \\ 10 \\ -1 \end{pmatrix}}_{=\theta^0}
$$

 $p(t)$ can take values in the scheduling space [0 8]

4 0 8

Numerical illustration

Consider the following LPV-OE system: $y(t) = y_{nf}(t) + e(t)$

$$
y_{n}(t) = -a_1^0(p(t)) y(t-1) + b_1^0(p(t)) u(t-1)
$$

$$
a_1^0(\rho(t)) = -0.9 + 0.1 \rho(t) \quad b_1^0(\rho(t)) = 10 - 1 \rho(t)
$$

$$
\underbrace{\left(\begin{array}{c} a_1^0(p(t)) \\ b_1^0(p(t)) \end{array}\right)}_{=\xi^0(p(t))} = \underbrace{\left(\begin{array}{ccc} 1 & p(t) & 0 & 0 \\ 0 & 0 & 1 & p(t) \end{array}\right)}_{=T(p(t))} \underbrace{\left(\begin{array}{c} -0.9 \\ 0.1 \\ 10 \\ -1 \end{array}\right)}_{=\theta^0}
$$

 $p(t)$ can take values in the scheduling space [0 8]

 QQ

イロト イ母 トイヨ トイヨト

Numerical illustration

Consider the following LPV-OE system: $y(t) = y_{nf}(t) + e(t)$

$$
y_{n}(t) = -a_1^0(p(t)) y(t-1) + b_1^0(p(t)) u(t-1)
$$

$$
a_1^0(p(t)) = -0.9 + 0.1 p(t) \t b_1^0(p(t)) = 10 - 1 p(t)
$$

$$
\underbrace{\left(\begin{array}{c} a_1^0(p(t)) \\ b_1^0(p(t)) \end{array}\right)}_{=\xi^0(p(t))} = \underbrace{\left(\begin{array}{ccc} 1 & p(t) & 0 & 0 \\ 0 & 0 & 1 & p(t) \end{array}\right)}_{=T(p(t))} \underbrace{\left(\begin{array}{c} -0.9 \\ 0.1 \\ 10 \\ -1 \end{array}\right)}_{=\theta^0}
$$

 $p(t)$ can take values in the scheduling space [0 8]

4 0 8

- イ何 ト イ ヨ ト

Frequency responses of the corresponding $G(z,\xi^0(\mathbf{p}_m))$

. p

メロメ メ都 メメ きょくき

 299

We choose: $N=1000$, $\sigma_{e}^{2}=0.5$ and R_{adm} enforces a standard deviation of 0.3% on each parameter of θ^{0}

Optimization problem based on the $M_{grid} = 17$ operating points

$$
\mathbf{p}_m=0,\ 0.5,\ 1,\ 1.5,...,\ 8
$$

 \Longrightarrow only three nonzero Φ_{u_m} at $\mathsf{p}_m=0,\;1$ and 8 Corresponding $G(z,\xi^0(\mathbf{p}_m))$ and $\mathbf{\Phi}_{\mu_m}$

 $\begin{picture}(180,10) \put(0,0){\line(1,0){155}} \put(10,0){\line(1,0){155}} \put(10,0){\line(1,0){155}} \put(10,0){\line(1,0){155}} \put(10,0){\line(1,0){155}} \put(10,0){\line(1,0){155}} \put(10,0){\line(1,0){155}} \put(10,0){\line(1,0){155}} \put(10,0){\line(1,0){155}} \put(10,0){\line(1,0){155}} \put(10,0){\line(1,0){155}}$

We choose: $N=1000$, $\sigma_{e}^{2}=0.5$ and R_{adm} enforces a standard deviation of 0.3% on each parameter of θ^{0}

Optimization problem based on the $M_{grid} = 17$ operating points

$$
\mathbf{p}_m=0,\ 0.5,\ 1,\ 1.5,...,\ 8
$$

 \Longrightarrow only three nonzero Φ_{u_m} at $\mathbf{p}_m=0,~1$ and 8 Corresponding $G(z, \xi^0(\mathbf{p}_m))$ and Φ_{u_m}

Let us compare the required input energy $\mathcal J$ to obtain $P_\theta^{-1} > R_{adm}$ for different choices of \mathbf{p}_m

 QQ

K ロ ▶ | K 伺 ▶ | K ヨ ▶

Conclusions

First attempt to tackle the optimal experiment design problem for LPV systems

Local approach: $p(t)$ follows a staircase shape

proach: $p(t)$ follows a staircase spokes of
ase $p(t)$ is certainly not (fully) opt
work will consider other shapes of A staircase $p(t)$ is certainly not (fully) optimal

Future work will consider other shapes of $p(t)$ (global LPV identification)

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Conclusions

First attempt to tackle the optimal experiment design problem for LPV systems

Local approach: $p(t)$ follows a staircase shape

A staircase $p(t)$ is certainly not (fully) optimal

Future work will consider other shapes of $p(t)$ (global LPV identification)

Conclusions

First attempt to tackle the optimal experiment design problem for LPV systems

Local approach: $p(t)$ follows a staircase shape

A staircase $p(t)$ is certainly not (fully) optimal

Future work will consider other shapes of $p(t)$ (global LPV identification)

 200