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Introduction

An LPV system is a system whose parameters depend on an exogenous
(scheduling) variable p(t)

If p(t) is kept constant , the LPV system is an LTI system
The dynamics of this LTI system depend on the value of the constant p
We have a collection of LTI dynamics at different operating points

Such a representation can be used to deal with non-linear systems (gain
scheduling)
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Introduction

Local LPV identification approach: p(t) is kept constant at successive
operating points and local LTI identification experiments are performed

We determine those operating points and the local LTI identification
experiments to guarantee a certain model accuracy with the least input

energy

Related work on the selection of the scheduling sequence: Khalate et al:
2009, Vizer et al: 2015
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Description of the LPV system

We consider the following LPV-OE system for simplicity:

Na

yar(t) == a (())yt—/)+z by (p(t)) u(t — i)

i=1

y(t) = yor(t) + e(2)

The parameter vector €0(p(t)) = (82(p(£)). . bny (p(£))) T depends on
the time-varying scheduling variable p(t)

(e = o + 32 P

j=1

by (p(t)) = by + Zb P(t)
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Description of the LPV system
a(p(t) =aly + > ay; pl(t) i=1.n,

j=1
b(p(t)) = by + Zb pPt) i=1.np

This defines a mapping T(p(t)) between the global parameter vector §°
and the time-varying parameter vector £°(p(t))

E(p(t)) = (@(p(t)), s ba, (P(1))) T 6° = (al g, b7, ) T
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|dentification objective

€(p(t)) = T(p(t)) 6°

The parameter vector #° entirely determines the LPV system

X. Bombois (CNRS)

=] 5
OED-LPV



|dentification objective

€(p(t)) = T(p(t)) 6°

The parameter vector 60 entirely determines the LPV system

Objective. Determine with the least powerful excitation an estimate 6 of
6° having a given accuracy:

Pe_l > Radm
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|dentification of an LPV system: local approach

Suppose p(t) is kept constant to an operating point ppm,

p(t) =pm Vt
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|dentification of an LPV system: local approach

Suppose p(t) is kept constant to an operating point ppm,
p(t) =pm Vit

The LPV system then reduces to an LTI system described by a
time-invariant parameter vector £%(p,)

y(t) = G(2,6%(pm))u(t) + e(t)

fo(pm) = T(pm) 90

This LTI system can of course then be identified using LTI prediction error
identification
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LTI identification at an operating point p,

If we apply an input signal u,, of spectrum &, to

ym(t) = G(2,€%(Pm))um(t) + em(t),
we can collect a data set ZN = {y,(t), um(t) | t = 1...N} and identify an
estimate &, of £%(py,) using:

N
= arg min 1>~ (vn(®) — 6(2.)um(1))"

t=1

This estimate is (asymptotically) such that &, ~ N (£%(pp). Pz )
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LTI identification at an operating point p,

The estimate &, is (asymptotically) such that &, ~ N(£2(ppm), Pe)

The covariance matrix Pz depends on &(py) and &,

4 N1 T
ém_0'327r —r

F(&,&(pm)) F(&*,&%(pm))* Dy, (w)dw

dG(z,¢€)

O(pm
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LTI identification at an operating point p,

The estimate &, is (asymptotically) such that &, ~ N(£2(ppm), Pe)

The covariance matrix Pz depends on &(py) and &,

4 N1 T
ém_0'327r —r

F(e™.(pm)) F(&, & (Pm))" Pu,, (w)dw

dG(z,¢)
d¢ £%(pm)

F(Z, fo(pm)) =

This operation has to be repeated at different p,, to deduce an estimate of
69 since dim(£%(pm)) < dim(6°)
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We obtain M estimates &, of &(pm)

T(pm) 6° :
ém = T(pm) 0° + 6m

Om ~ N0, P )
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We obtain M estimates &, of £2(pm) = T(pm) 6° :

ém = T(pm) ‘90 + 5m 5m ~ N(O, Pém)

The estimate 6 of 6° is classically determined using ordinary least squares
based on the observations &, and the regressor T (ppm)
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We obtain M estimates &, of £2(pm) = T(pm) 6° :

ém = T(pm) ‘90 + 6m 5m ~ N(O, Pém)

The estimate 6 of 6° is classically determined using ordinary least squares
based on the observations &, and the regressor T (ppm)

This is however not the minimum variance estimator since the respective
variances of &, are neglected

= use of weighted least squares:

M

= arg m|n Z ( pm)9) Pgl (ém - T(Pm)9>

m

X. Bombois (CNRS) OED-LPV 28/09/2016 10 / 21



The estimate f is such that  ~ N (6°, Py)
M
Pyt = T (Pm) P T(pm)
m=1
with Pé_l linear in &,

Pe_l is the sum of the contribution of each local experiments !!
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Optimal experimental design

To-be-optimized variables:

@ the number M of local identification experiments M,
@ the operating points p,, (m=1...M)
o the spectra &, of the input signal up, (m = 1...M) used in the local

identification experiments

p(t)

p2
p1
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Optimal experimental design

To-be-optimized variables:

@ the number M of local identification experiments M,
@ the operating points p,, (m=1...M)

o the spectra &, of the input signal up, (m = 1...M) used in the local
identification experiments

M
1 ™
To-be-minimized cost: J = N Z 2—/ o, (w) dw
7r
m=1 -

Accuracy constraint: Pe_l > Radm

P (1) uIM
o LTI ™M
- us -
3 -
'3 ! LTI 3
P ulz
ul
LTI 2
p2 | ria

time
X. Bombois (CNRS) OED-LPV 28/09/2016 12 /21



Convex optimization for the design of the spectra

Suppose that we have a-priori chosen M and p,,, (m = 1...M)
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Convex optimization for the design of the spectra

Suppose that we have a-priori chosen M and p,,, (m = 1...M)

The design of ®,, (m = 1...M) is then a convex optimization problem

M
1 e
Dy, (g!]l.../v/) m§::1 o /_7r (W) dw

M
> TT(Pm) P: (®u,) T(Pm) > Ram
m=1
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How to perform the selection of the operating points p,,?

min¢um N ZII‘I\;IZ]. %fjﬂ' d>’Jm((’u) dw
Yot TT(Pm) P (®ur) T(Pm) > Radm

p(t)

time
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How to perform the selection of the operating points p,,?

p(t)

ming, N M oL T oy, (w) dw

m=1 2r

Yot TT(Pm) P2 H(®uy) T(Pm) > Rad
plt) [

1711 0 l 1T 1

time time
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How to perform the selection of the operating points p,,?

ming, N M L [T o, (w) dw

m=1 27

Yomet TT(Pm) P (®uy) T(Pm) > Rad
Pl pl) | s

ul
(71 0 | e

time time

These experiments are equivalent from a mathematical point of view since
they lead to the same cost J and the same PQ_1 1
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Convex formulation of the experiment design problem

Consider a fine grid {p1, P2, ..., Pm,,,} Of the scheduling space

We will determine a spectrum ¢, for all p,, in this fine grid
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Convex formulation of the experiment design problem

Consider a fine grid {p1, P2, ..., Pm,,,} Of the scheduling space

We will determine a spectrum ¢, for all p,, in this fine grid

The optimal experiment design problem can thus be formulated as:

Mgrid 1 -
min N il ® d
by, (mzllmMg,,»d) 2:1 o . Um (w) w

Mgn’d
> T (pm) P (®u,) T(Pm) > Redm
m=1

X. Bombois (CNRS) OED-LPV 28/09/2016

15 / 21



Convex formulation of the experiment design problem

Consider a fine grid {p1, P2, ..., Pm,,,} Of the scheduling space

We will determine a spectrum ¢, for all p,, in this fine grid

The optimal experiment design problem can thus be formulated as:

1
min N — $, (w) dw
Doy, (mzl'“Mgr/d) Z ( )

Mgrid
> T (pm) P (®u,) T(Pm) > Redm
m=1

The local experiments will of course only be performed at the operating
points pp, for which 97 £ 0
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Chicken-and-egg problem

The covariance matrix Py depends on 6°

We can determine a first estimate 6;,j; of 6° using an initial local LPV
identification

The optimal experiment design problem will then be used to complement
the information delivered by this initial experiment

In this optimal experiment design problem, 6° will be replaced by 8
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Numerical illustration

Consider the following LPV-OE system: y(t) = ynr(t) + e(t)

yar(t) = —a3(p(t)) y(t — 1)+ bY(p(t)) u(t —1)

A(p(t) = —0.9 + 01 p(t) BY(p(t)) =10 — 1 p(t)
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Numerical illustration

Consider the following LPV-OE system: y(t) = ynr(t) + e(t)

yar(t) = —a3(p(t)) y(t — 1)+ bY(p(t)) u(t —1)

A(p(t) = —0.9 + 01 p(t) BY(p(t)) =10 — 1 p(t)

—0.9

<a§’(p(t))>:<1 p(t) 0 0 ) 0.1

bY(p(t)) 0 0 1 p(t) 10
:gof;(t)) =T(p(t)) __,1_/

=60
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Numerical illustration

Consider the following LPV-OE system: y(t) = ynr(t) + e(t)

yar(t) = —a3(p(t)) y(t — 1)+ bY(p(t)) u(t —1)

A(p(t) = —0.9 + 01 p(t) BY(p(t)) =10 — 1 p(t)

—-0.9

< a(p(t)) > _ ( 1 pt) 0 0 ) 0.1

BO(p(2)) 0 0 1pt))| 10
—69(p(1)) =T(p(t)) __,1_/

=00

p(t) can take values in the scheduling space [0 8]
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Frequency responses of the corresponding G(z,£%(pm))

vigtsn )
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We choose: N = 1000, ag = 0.5 and R,4n enforces a standard deviation
of 0.3% on each parameter of §°

Optimization problem based on the M,y = 17 operating points
Pn=20,05 1, 1.5, ..., 8
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We choose: N = 1000, ag = 0.5 and R,4n enforces a standard deviation
of 0.3% on each parameter of §°

Optimization problem based on the M,y = 17 operating points
Pn=20,05 1, 1.5, ..., 8

= only three nonzero ¢, atp, =0, 1and 8

Corresponding G(z,£%(pm)) and &,

Bode Diagram o

Magnituds (d8)
3,

5 \ ! N . .
10° 107 10" 10° 10’ 10° 10" 10° 10
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Let us compare the required input energy J to obtain P9_1 > Rugm for
different choices of p,,

Pm required input energy J
pm=20,1 8 1380
Pm=0, 4, 8 2320
Pm=0,1 23000
Pm=0, 8 16000
Ppm=1, 8 23000
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Conclusions

First attempt to tackle the optimal experiment design problem for LPV
systems
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Conclusions

First attempt to tackle the optimal experiment design problem for LPV

systems

Local approach: p(t) follows a staircase shape

™M
P (t) “
pM | LTI ™M
- u3 -
'3 LT3
P uz
o | LTI 2
p2 LTy g —
Pl ————
I -
time
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Conclusions

First attempt to tackle the optimal experiment design problem for LPV
systems

Local approach: p(t) follows a staircase shape

™M
P (t) “
pM | LTI ™M
- us3 -
'3 LT3
P uz
o | LTI 2
p2 LTy g —
Pl ————
I -
time

A staircase p(t) is certainly not (fully) optimal

Future work will consider other shapes of p(t) (global LPV identification)
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